
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Variational Dropout Sparsification for Particle
Identification speed-up
To cite this article: Artem Ryzhikov et al 2020 J. Phys.: Conf. Ser. 1525 012099

 

View the article online for updates and enhancements.

You may also like
A divisive spectral method for network
community detection
Jianjun Cheng, Longjie Li, Mingwei Leng
et al.

-

Generating directed networks with
prescribed Laplacian spectra
Sara Nicoletti, Timoteo Carletti, Duccio
Fanelli et al.

-

Systems and circuits for AI chips and their
trends
Hiroshi Momose, Tatsuya Kaneko and
Tetsuya Asai

-

This content was downloaded from IP address 89.175.46.45 on 13/06/2024 at 13:30

https://doi.org/10.1088/1742-6596/1525/1/012099
/article/10.1088/1742-5468/2016/03/033403
/article/10.1088/1742-5468/2016/03/033403
/article/10.1088/2632-072X/abbd35
/article/10.1088/2632-072X/abbd35
/article/10.35848/1347-4065/ab839f
/article/10.35848/1347-4065/ab839f
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjss6BT1cWwWFxu2zjyqvRhi8UbndIZB5T9cMOEk5i0ceP94ItyCf1PmmgC21NTczqdAdyBkY4Q_deKLgJBQnYW1r9spwwEYoGU01dMOfMsGin158q8Q3bAsFjrXtkRFWemIvsc0nighUwFKXerwJXuNPZPCtabMs7yFuvf5P5YJYiC-J23kGybKdJrdeljoPgI-e8wIJCIYhAaKk5RXHSPykyhlpXuOAMKFAIvv_Fw-zRXrBC7Vc72_cA3-8W_znPXVyoD2A9pEofpTE1hXvtUAa6Z8E919cUThpMEJuQxsp4Ay1vdtimOfl7XHJONEODaVtQr5N1DW8RWvlBeWr9hzPrdV3AEWP&sig=Cg0ArKJSzIPOmLR9DW_y&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012099

IOP Publishing

doi:10.1088/1742-6596/1525/1/012099

1

Variational Dropout Sparsification for Particle

Identification speed-up

Artem Ryzhikov1, Denis Derkach1, Mikhail Hushchyn1

on behalf of LHCb collaboration
1 National Research University Higher School of Economics, 20 Myasnitskaya st., Moscow
101000, Russia

E-mail: aryzhikov@hse.ru

Abstract. Accurate particle identification (PID) is one of the most important aspects of the
LHCb experiment. Modern machine learning techniques such as neural networks (NNs) are
efficiently applied to this problem and are integrated into the LHCb software. In this research,
we discuss novel applications of neural network speed-up techniques to achieve faster PID in
LHC upgrade conditions. We show that the best results are obtained using variational dropout
sparsification, which provides a prediction (feedforward pass) speed increase of up to a factor
of sixteen even when compared to a model with shallow networks.

1. Introduction
Particle identification (PID) algorithms play a crucial part in any high-energy physics

analysis. A higher performance PID algorithm leads to a better background rejection and thus
more precise results. Machine learning (ML) algorithms have gradually become the baseline
approach for this task [1]. One large family of such algorithms are neural networks.

The main drawback of a deep neural network algorithm, however, is the time of prediction,
which might become an issue in a high-load environment. This problem is particularly relevant
in view of the forthcoming LHC upgrade, where the amount of collected data will be higher
than ever. This work presents a study and comparison of modern speed-up techniques of neural
networks applied to the PID problem. Techniques such as a full NN’s configuration (like number
of layers and neurons) search, pruning and variational dropout are considered and compared in
the PID problem context.

2. Problem statement
The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range

2 < η < 5, described in detail in Refs. [2]. Identification of various final state particles is
performed by combining together the information from the LHCb detectors, namely from ring-
imaging Cherenkov detectors (RICH), the electromagnetic and hadronic calorimeters, muon
chambers (Figure 1) and tracking system. Apart from the preaggregated likelihood such as
observable subdetector responses [3], track geometry variables and different detector flags are
also used. In addition to the presented solution, the muon identification [4] and calorimeter
information about neutral clusters [5] are also used.



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012099

IOP Publishing

doi:10.1088/1742-6596/1525/1/012099

2

The PID algorithm objective is to identify the charged particle type associated with a given
track. In the LHCb experiment there are five relevant particle species, namely, electron, muon,
pion, kaon, proton, and ghost type (charged tracks that do not correspond to a real particle which
passed through the detector) making a total of six hypotheses. Therefore, this is a multiclass
classification problem.

The aim of this research is to make PID algorithms [1] faster. The research is focused on
neural networks only.

3. Existing methods
In the following section we discuss several possible approaches to speed up the neural

networks.

3.1. Configuration grid search
One of the most commonly used methods to make neural network faster is finding its

optimal configuration. Namely, an optimal number of layers and neurons of the neural network.
Getting an optimal configuration of the neural network helps to find the necessary and sufficient
complexity of the model for given data. It provides a good compromise between model speed
and quality. However, such method has several drawbacks:

• It requires a full search over all possible configurations. Even using advanced
hyperparameter optimization techniques like [6] the search space is quite large.

• Due to the limited number of tested configurations the best configuration found is not the
optimal one (in a global sense).

• The procedure is time consuming. Each tested configuration must be trained and evaluated.

• The procedure is not end-to-end. It requires multiple stages of training and evaluation
instead of single one.

3.2. Pruning
Another commonly used and efficient family of techniques to improve feedforward

performance of NNs is neural network pruning. Unlike the method from Section 3.1, pruning is
applied directly to a specific trained neural network instance. Namely, it is based on the idea
of reducing the number of parameters during or after training. This approach makes it possible
to train neural network only once, making the speeding up procedure much faster and more
convenient. In this subsection we consider one of the most efficient pruning techniques to date
[7, 8, 9].

The technique is called quantization. Originally it was based on the simple idea to move
from high precision floating point types to lower precision ones. Moving to low precision reduces
feedforward computation costs, making neural network faster. However, now there are lots of
modifications of such a technique.

One such modification is trained ternary quantization [9]. It is based on the idea to move from
individual parameter values to common ones. In [9] individual weights are replaced with one of
three common values (Wp, Wn and 0, Figure 3). Thus, the number of arithmetic operations
in feedforward stage of the neural network can be reduced, making the neural network faster as
well.

Since trained ternary quantization is a state-of-the-art [9] pruning technique, in this research
we consider only this approach of pruning not taking into account another pruning techniques
such as SVD and L-pruning [7, 8].



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012099

IOP Publishing

doi:10.1088/1742-6596/1525/1/012099

3

Figure 1. LHCb detector [2] Figure 2. Dropout [10]

Figure 3. Trained ternary quantization [9]

3.3. Variational Dropout
An alternative way to speed-up a neural network is to drop each parameter (zero connection’s

weight) separately with some probability p (Figure 2). Such a technique is quite common in
deep learning and is called dropout [10]. In practice dropout is a usefull technique which helps
to prevent neural networks from overfitting. However, it requires the hyperparameter value
p to be defined. Moreover, each specific layer parameter is dropped (zeroed) randomly with
the same probability p. It makes the original dropout implementation inappropriate for the
automatic relevance determination (ARD) of neural network parameters, when all the redundant
parameters are automatically dropped out during training stage. It makes it infeasible to sparsify
a neural network effectively.

The authors of [11] propose an efficient and elegant way to train the dropout rate p(θ) for
each trainable parameter θ in the whole range of possible values ∀θ : p(θ) ∈ [0, 1]. The higher
p(θ) for parameter θ the more likely for θ to be dropped (the less important θ is). Thus, such
a technique helps to estimate the relevance for each parameter. The only thing remaining after
training is to drop such a parameters θ, whose dropout rate of p(θ) is close to 1. In this way,
we can perform a speed up of the neural network.

4. Data
In the simulation, pp collisions are generated using Pythia [12] with a specific LHCb

configuration [13]. Decays of hadronic particles are described by EvtGen [14], in which final-
state radiation is generated using Photos [15]. The interaction of the generated particles with
the detector, and its response, are implemented using the Geant4 toolkit [16] as described in
Ref. [17].

The PID algorithms are trained on simulated samples with the 6 labeled particle types. The
training sample is obtained from abundant simulated decays of heavy hadrons that emulate
the kinematic distributions of signal samples studied in various LHCb analyses. Aggregated



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012099

IOP Publishing

doi:10.1088/1742-6596/1525/1/012099

4

information from the LHCb sub-detectors, geometry, track reconstruction quality and kinematic
properties are used as input features for the algorithms [18]. Only long tracks are considered,
which pass through both VELO, trackers and the calorimeter. The reconstruction quality of
such tracks is highest and they are used in most LHCb analyses.

The experimental data consists of 6 million tracks (1 million trackes per each particle type).
50 % of with were taken for train, 50 % for test. Each sample (track) has 59 features.

5. Results
The quality of a model is measured by ROC AUC metric. Thus, the benchmark of the

research is the model prediction speed at given ROC AUC (the ROC AUC of the baseline).
We implement all techniques described above to test them in the PID problem at LHCb. The

results are presented in table 1.

ROC AUC
Method # Neurons Electron Ghost Kaon Muon Pion Proton Speed-Up

6xDNN 45-48 0.9855 0.9485 0.9148 0.9844 0.9346 0.9178 x1
1xDNN 150 0.9863 0.9570 0.9145 0.9889 0.9463 0.9167 x1
Grid Search 30 0.9871 0.9557 0.9158 0.9893 0.9427 0.9125 x5
Pruning Auto 0.9843 0.9435 0.9154 0.9834 0.9352 0.9110 x5
VarDropout Auto 0.9881 0.9548 0.9244 0.9896 0.9509 0.9228 x16

Table 1. Performance of different methods

First two lines contain two equivalent baseline solutions for the PID problem [18].
The first line corresponds to the baseline algorithm of 6 binary classifiers, where each classifier

is a dense neural network with single hidden layer.
The second line corresponds to the alternative baseline of single neural network with the

same input features (Sec. 4), single hidden layer and 6 outputs (number of classes). The size
of hidden layer was chosen to be 150 neurons to make the number of parameters and inference
time close to the original (first) baseline.

The third line corresponds to the best configuration of the neural network provided by a full
configuration search (grid search, Sec. 3.1). This approach provided a relative speed up of a
factor 5 without loss of quality. However, it took lots of time to test all candidate configurations
of the neural network to choose the optimal one.

The fourth line corresponds to one of the state-of-the-art pruning techniques - trained ternary
quantization (Sec. 3.2). It also provides a factor 5 speed-up. However, the best configuration is
found much faster. The neural network was trained only once with only the initial configuration.
However, this approach lead to a significant loss of quality.

Finally, the last line corresponds to the ARD variational dropout solution (Sec. 3.3). It made
the neural network approximately 16 times faster without any loss of quality. Moreover, the
neural network was trained in the end-to-end mode. Namely, it was trained only once with only
the initial configuration of layers.

All the benchmarks were performed on CPU. All the neural networks were trained using
PyTorch framework [19].

6. Conclusion
Neural network speed up is a problem in a wide range of applications. In this research

the most used speed up techniques were studied and compared in the application to the PID
problem. The results shows that Variational Dropout Sparsification technique [11] provides the



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012099

IOP Publishing

doi:10.1088/1742-6596/1525/1/012099

5

best results for the given problem. It speed up the PID neural network 16 times without any
loss of quality.

The source code is available at1

Acknowledgement
The research leading to these results has received funding from Russian Science Foundation

under grant agreement n 17-72-20127.

References
[1] Derkach D et al, 2017, Machine-Learning-based global particle-identification algorithms at the LHCb

experiment, J. Phys.: Conf. Ser. 1085 042038
[2] The LHCb Collaboration, 2008, The LHCb Detector at the LHC, JINST 3 S08005
[3] The LHCb RICH group, 2013, Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73

2431
[4] Archilli F et al, 2013, JINST 8 P10020 (Preprint 1306.0249)
[5] Deschamps O, Machefert F P, Schune M H, Pakhlova G and Belyaev I, 2003, Photon and neutral pion

reconstruction, Tech. Rep. LHCb-2003-091 CERN Geneva https://cds.cern.ch/record/691634

[6] Rasmussen C and Williams C, 2006, Gaussian processes for machine learning, The MIT Press
[7] Louizos C, Welling M, Kingma DP, 2018, Learning Sparse Neural Networks through L0 regularization,

https://arxiv.org/pdf/1712.01312.pdf

[8] Duarte J, et al, 2018, Fast inference of deep neural networks in FPGAs for particle physics, JINST 13 P07027
[9] Zhu C, Han S, Mao H, Dally W J, 2016, Trained Ternary Quantization, https://arxiv.org/abs/1612.01064

[10] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R, 2014, Dropout: A Simple Way to
Prevent Neural Networks from Overfitting, Journal of Machine Learning Research 15

[11] Molchanov D, Ashukha A, Vetrov D, 2017, Variational Dropout Sparsifies Deep Neural Networks, https:
//arxiv.org/abs/1701.05369

[12] S̃jostrand S M T, Skands P, 2008, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 852
[13] Belyaev I et al, 2011, Handling of the generation of primary events in Gauss, the LHCb simulation framework,

J. Phys. : Conf. Ser. 331 032047
[14] Lange D J, 2001, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 152
[15] Golonka P and Was Z, 2006, Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur.

Phys. J. C45 97
[16] Allison J et al, Geant4 collaboration, Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 270
[17] Clemencic M et al, 2011, The LHCb simulation application, Gauss: Design, evolution and experience, J.

Phys. Conf. Ser. 331 032023
[18] Aaij R, Anderlini L et al, 2018, Selection and processing of calibration samples to measure the particle

identification performance of the LHCb experiment in Run 2, EPJ Techn Instrum, 6 1 (2019) 1
[19] PyTorch project, 2018, ”PyTorch” [software], version 1.0.0, Available from https://github.com/pytorch/

pytorch [accessed 2018-12-20]
[20] Python project, 2018, ”Python” [software], version 3.6.7, Available from https://www.python.org/

downloads/release/python-367/ [accessed 2018-12-20]

1 https://github.com/HolyBayes/pytorch_ard

https://cds.cern.ch/record/691634
https://arxiv.org/pdf/1712.01312.pdf
https://arxiv.org/abs/1612.01064
https://arxiv.org/abs/1701.05369
https://arxiv.org/abs/1701.05369
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://www.python.org/downloads/release/python-367/
https://www.python.org/downloads/release/python-367/
https://github.com/HolyBayes/pytorch_ard

